Jump to content

Lighting enhancements and fixes in Leadwerks 3

Admin

2,900 views

After a wild week at GDC 2013, it's nice to be back doing what I do best...writing code!

 

A new build of Leadwerks 3 is now available. We've added light vector maps so that lightmapped surfaces can display normal mapping effects. Lightmapped materials with normal maps should use the texture "Common/lightvectormap.tex" in slot 4. (If you create a new lightmapped material, this will be done automatically.)

Screen Shot 2013-04-08 at 4.18.55 PM.png

 

This technique works by calculating the average light vector that influences each luxel in the lightmap. Each vector is weighted by the light's intensity and range to get an overall vector representing the direction most light is coming from. The light vectors are encoded in a secondary light map that looks like this:

Screen Shot 2013-04-08 at 4.24.05 PM.png

 

This effect will even work with specular reflection, as seen in this totally over-the-top screenshot:

lightvec.jpg

 

We also made about a dozen small fixes to the engine and editor. For more detail on recent issues resolved, visit the bug reports forum. Like any new software, we've had some teething problems, but it's pretty easy to resolve those issues as they arise. Bugs can be fixed as they are identified, but bad design is forever. Fortunately, I think we've got a great design and a good and stable development system.



9 Comments


Recommended Comments

Hi looks good but I dont seem to have a lightvectormap.tex? Anyone else, there is a normal.tex?

 

Note this was using an exsiting project, a new project is fine. I seem to have alot of trouble with trying to use new updates on exsiting projects after updates.

 

Andy

Share this comment


Link to comment

It's located in "Leadwerks\Editor\Templates\Common\Materials\Common\lightvectormap.tex"

Share this comment


Link to comment

What we might be able to do is add an "Update project" feature that would copy over only the files that have changed since you created your project.

Share this comment


Link to comment

The update looks really great. I can't see any lightvectormap.tex though. I see normal.tex, Lightmap.tex and lightvectormap.png, but no lightvectormap.tex

 

Edit: physics are much improved in this build!

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 8
      An often-requested feature for terrain building commands in Leadwerks 5 is being implemented. Here is my script to create a terrain. This creates a 256 x 256 terrain with one terrain point every meter, and a maximum height of +/- 50 meters:
      --Create terrain local terrain = CreateTerrain(world,256,256) terrain:SetScale(256,100,256) Here is what it looks like:

      A single material layer is then added to the terrain.
      --Add a material layer local mtl = LoadMaterial("Materials/Dirt/dirt01.mat") local layerID = terrain:AddLayer(mtl) We don't have to do anything else to make the material appear because by default the entire terrain is set to use the first layer, if a material is available there:

      Next we will raise a few terrain points.
      --Modify terrain height for x=-5,5 do for y=-5,5 do h = (1 - (math.sqrt(x*x + y*y)) / 5) * 20 terrain:SetElevation(127 + x, 127 + y, h) end end And then we will update the normals for that whole section, all at once. Notice that we specify a larger grid for the normals update, because the terrain points next to the ones we modified will have their normals affected by the change in height of the neighboring pixel.
      --Update normals of modified and neighboring points terrain:UpdateNormals(127 - 6, 127 - 6, 13, 13) Now we have a small hill.

      Next let's add another layer and apply it to terrain points that are on the side of the hill we just created:
      --Add another layer mtl = LoadMaterial("Materials/Rough-rockface1.json") rockLayerID = terrain:AddLayer(mtl) --Apply layer to sides of hill for x=-5,5 do for y=-5,5 do slope = terrain:GetSlope(127 + x, 127 + y) alpha = math.min(slope / 15, 1.0) terrain:SetMaterial(rockLayerID, 127 + x, 127 + y, alpha) end end We could improve the appearance by giving it a more gradual change in the rock layer alpha, but it's okay for now.

      This gives you an idea of the basic terrain building API in Leadwerks 5, and it will serve as the foundation for more advanced terrain features. This will be included in the next beta.
    • By Josh in Josh's Dev Blog 1
      Documentation in Leadwerks 5 will start in the header files, where functions descriptions are being added directly like this:
      /// <summary> /// Sets the height of one terrain point. /// </summary> /// <param name="x">Horizontal position of the point to modify.</param> /// <param name="y">Vertical position of the point to modify.</param> /// <param name="height">Height to set, in the range -1.0 to +1.0.</param> virtual void SetHeight(const int x, const int y, const float height); This will make function descriptions appear automatically in Visual Studio, to help you write code faster and more easily:

      Visual Studio can also generate an XML file containing all of the project's function descriptions as part of the build process. The generated XML file will serve as the basis for the online documentation and Visual Studio Code extension for Lua. This is how I see it working:

      I am also moving all things private to private members. I found a cool trick that allows me to create read-only members. In the example below, you can access the "position" member to get an entity's local position, but you cannot modify it without using the SetPosition() method. This is important because modifying values often involves updating lots of things in the engine under the hood and syncing data with other threads. This also means that any method Visual Studio displays as you are typing is okay to use, and there won't be any undocumented / use-at-your-own risk types of commands like we had in Leadwerks 4.
      class Entity { private: Vec3 m_position; public: const Vec3& position; }; Entity::Entity() : position(m_position) {} It is even possible to make constructors private so that the programmer has to use the correct CreateTerrain() or whatever command, instead of trying to construct a new instance of the class, with unpredictable results. Interestingly, the constructor itself has to be added as a friend function for this to work.
      class Terrein { private: Terrain(); public: friend shared_ptr<World> CreateTerrain(shared_ptr<World>, int, int, int) }; The only difference is that inside the CreateTerrain function I have to do this:
      auto terrain = shared_ptr<Terrain>(new Terrain); instead of this, because make_shared() doesn't have access to the Terrain constructor. (If it did, you would be able to create a shared pointer to a new terrain, so we don't want that!)
      auto terrain = make_shared<Terrain>(); I have big expectations for Leadwerks 5, so it makes sense to pay a lot of attention to the coding experience you will have while using this. I hope you like it!
    • By Josh in Josh's Dev Blog 0
      A new update is available for beta testers.
      Terrain
      The terrain building API is now available and you can begin working with it, This allows you to construct and modify terrains in pure code. Terrain supports up to 256 materials, each with its own albedo, normal, and displacement maps. Collision and raycasting are currently not supported.
      Fast C++ Builds
      Precompiled headers have been integrated into the example project. The Debug build will compile in about 20 seconds the first run, and compile in just 2-3 seconds thereafter. An example class is included which shows how to add files to your game project for optimum compile times. Even if you edit one of your header files, your game will still compile in just a few seconds in debug mode! Integrating precompiled headers into the engine actually brought the size of the static libraries down significantly, so the download is only about 350 MB now.
      Enums Everywhere
      Integer arguments have been replaced with enum values for window styles, entity bounds, and load flags. This is nice because the C++ compiler has some error checking so you don't do something like this:
      LoadTexture("grass.dds", WINDOW_FULLSCREEN); Operators have been added to allow combining enum values as bitwise flags.
      A new LOAD_DUMP_INFO LoadFlags value has been added which will print out information about loaded files (I need this to debug the GLTF loader!).
      Early Spring Cleaning
      Almost all the pre-processor macros have been removed from the Visual Studio project, with just a couple ones left. Overall the headers and project structure have been massively cleaned up.
×
×
  • Create New...