Jump to content

You're Making your Visual Studio C++ Projects Wrong

Admin

2,607 views

Visual Studio gives two options for creating C++ applications. Console applications use printed text to communicate with the user, harkening back to the pre-GUI days of DOS. The other option is a windowed application with a GUI interface, simply called "Win32 Project" in the Visual Studio project creation dialog.

 

vs.jpg

 

A console application will use the regular old main function you know and love:

int main(int argc,const char *argv[])

 

This is cross-platform compatible and runs on any operating system. A "Win32 Project", however, will use a special WinMain() function that only works on Windows:

WinMain(HINSTANCE hInst, HINSTANCE hPrevInst, LPSTR, int) 

 

So if you don't want a black rectangle printing a bunch of lines of text, you have to use the WinMain() function. But, there is a way to fix this. We can change a console application to a windowed application in the Linker settings in the Visual Studio project settings. Change the Linker > System > Subsystem property to a windowed application.

 

console.jpg

 

There's also a way to force the program to use the cross-platform main() function. Change the setting Linker > Options > All Options > Entry Point to mainCRTStartup.

 

main.jpg

 

Although the application will no longer show a black text box, the printed output is still detectable by a parent application like the Leadwerks script editor.

 

scripteditor.jpg

 

However, if you create a .bat file to run your application, you can only pipe the output to a text file. The text will not be shown when the .bat file runs:

MyGame.exe > output.txt

 

Of course, any Leadwerks game will automatically write it's output to a text log already, so this is sort of redundant. Another consideration is you will not be able to see the output when you run your application from Visual Studio. Strange that VS doesn't support one of the most basic needs of an IDE, and has no known method of viewing the printed output of your program when you run it. However, if you want to get rid of that annoying black popup box, and you want your code to be cross-platform compatible, this is the way to do it.



3 Comments


Recommended Comments

You can also use this at the top of App.cpp

 

#pragma comment(linker, "/SUBSYSTEM:windows /ENTRY:mainCRTStartup")

 

Running it from Visual Studio will still create the window but won't print anything to it. Running straight from the EXE won't create the window at all.

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 3
      I wanted to work on something a bit different, and this sure is different. I've got a framework of a new particle system worked out. What's really special about this system is the amount of interactivity the particles will allow.
      Particle-world collisions. Particle-particle collisions (repulsion) Particle-particle cohesion (fluids with surface tension) Instead of just being a visual effect, I want our new particles to be fully interactive with physics so that particles can exert forces on objects. This will allow you to simulate fluids, smoke, and other effects in a realistic manner, not just dumb collision of particles bounding off walls. It should even be possible to simulate hydrophobic and hydrophillic liquids if you mix two together with different cohesion values.
      Basically what I want is something like Nvidia Flow on the CPU and exerting forces on the world. So if you had water falling on a water wheel the wheel would move because of the forces, or a blast of wind could knock objects over without any special force fields or other fake effects.
      I also have a technique worked out that will allow lighting of clouds and other masses of gas, with back-scattering.
      Emitters can be instanced so if you have one really high-quality torch effect, for example, you can instance it and use it as much as you like without any additional computational cost per instance.
      Particle emitters can be controlled with a Lua script or C++ actor. Two new functions are available, UpdateParticle() and EmitParticle(). Here is a script that controls particle behavior over time:
      entity.particleVelocity = Vec3(0,0,1) entity.particleAcceleration = Vec3(0,-1,0) entity.inverseSquareFalloff = true entity.particleRadiusBegin = 0.1 entity.particleRadiusEnd = 0.2 entity.particleColorBegin = Vec4(1,1,1,1) entity.particleColorEnd = Vec4(1,1,1,0) entity.particleMass = 1 entity.particleSpin = 5 function entity:Start() self.particleColorBeginHSL = HSL(self.particleColorBegin.rgb) self.particleColorEndHSL = HSL(self.particleColorEnd.rgb) local emitter = Emitter(self) if emitter == nil then return end local n for n = 1, #emitter.particles do emitter.particles[n].mass = self.particleMass emitter.particles[n].falloff = (n-1) / (#emitter.particles - 1) end end function entity:EmitParticle(index) local emitter = Emitter(self) if emitter == nil then return end emitter.particles[index].position = self:GetPosition(true) emitter.particles[index].velocity = TransformVector(self.particleVelocity,self,nil) emitter.particles[index].radius = self.particleRadiusBegin emitter.particles[index].color = self.particleColorBegin end function entity:UpdateParticle(index) local emitter = Emitter(self) if emitter == nil then return end emitter.particles[index].velocity = emitter.particles[index].velocity + self.particleAcceleration / 60 local falloff = emitter.particles[index].falloff if self.inverseSquareFalloff then falloff = falloff * falloff end emitter.particles[index].color.rgb = RGB(self.particleColorBeginHSL * (1 - falloff) + self.particleColorEndHSL * falloff) emitter.particles[index].color.a = self.particleColorBegin.a * (1 - falloff) + self.particleColorEnd.a * falloff emitter.particles[index].radius = self.particleRadiusBegin * (1 - falloff) + self.particleRadiusEnd * falloff emitter.particles[index].rotation = emitter.particles[index].rotation + self.particleSpin / 60 end A different script could be used to make particles emit from vertices of a model, to make the model appear to be on fire, or other effects. This will allow infinite customization to create any behavior you want.
      Particle physics will be calculated on the physics thread so I expect them to be very fast.
    • By Josh in Josh's Dev Blog 6
      For finer control over what 2D elements appear on what camera, I have implemented a system of "Sprite Layers". Here's how it works:
      A sprite layer is created in a world. Sprites are created in a layer. Layers are attached to a camera (in the same world). The reason the sprite layer is linked to the world is because the render tweening operates on a per-world basis, and it works with the sprite system just like the entity system. In fact, the rendering thread uses the same RenderNode class for both.
      I have basic GUI functionality working now. A GUI can be created directly on a window and use the OS drawing commands, or it can be created on a sprite layer and rendered with 3D graphics. The first method is how I plan to make the new editor user interface, while the second is quite flexible. The most common usage will be to create a sprite layer, attach it to the main camera, and add a GUI to appear in-game. However, you can just as easily attach a sprite layer to a camera that has a texture render target, and make the GUI appear in-game on a panel in 3D. Because of these different usages, you must manually insert events like mouse movements into the GUI in order for it to process them:
      while true do local event = GetEvent() if event.id == EVENT_NONE then break end if event.id == EVENT_MOUSE_DOWN or event.id == EVENT_MOUSE_MOVE or event.id == EVENT_MOUSE_UP or event.id == EVENT_KEY_DOWN or event.id == EVENT_KEY_UP then gui:ProcessEvent(event) end end You could also input your own events from the mouse position to create interactive surfaces, like in games like DOOM and Soma. Or you can render the GUI to a texture and interact with it by feeding in input from VR controllers.

      Because the new 2D drawing system uses persistent objects instead of drawing commands the code to display elements has changed quite a lot. Here is my current button script. I implemented a system of abstract GUI "rectangles" the script can create and modify. If the GUI is attached to a sprite layer these get translated into sprites, and if it is attached directly to a window they get translated into system drawing commands. Note that the AddTextRect doesn't even allow you to access the widget text directly because the widget text is stored in a wstring, which supports Unicode characters but is not supported by Lua.
      --Default values widget.pushed=false widget.hovered=false widget.textindent=4 widget.checkboxsize=14 widget.checkboxindent=5 widget.radius=3 widget.textcolor = Vec4(1,1,1,1) widget.bordercolor = Vec4(0,0,0,0) widget.hoverbordercolor = Vec4(51/255,151/255,1) widget.backgroundcolor = Vec4(0.2,0.2,0.2,1) function widget:MouseEnter(x,y) self.hovered = true self:Redraw() end function widget:MouseLeave(x,y) self.hovered = false self:Redraw() end function widget:MouseDown(button,x,y) if button == MOUSE_LEFT then self.pushed=true self:Redraw() end end function widget:MouseUp(button,x,y) if button == MOUSE_LEFT then self.pushed = false if self.hovered then EmitEvent(EVENT_WIDGET_ACTION,self) end self:Redraw() end end function widget:OK() EmitEvent(EVENT_WIDGET_ACTION,self) end function widget:KeyDown(keycode) if keycode == KEY_ENTER then EmitEvent(EVENT_WIDGET_ACTION,self) self:Redraw() end end function widget:Start() --Background self:AddRect(self.position, self.size, self.backgroundcolor, false, self.radius) --Border if self.hovered == true then self:AddRect(self.position, self.size, self.hoverbordercolor, true, self.radius) else self:AddRect(self.position, self.size, self.bordercolor, true, self.radius) end --Text if self.pushed == true then self:AddTextRect(self.position + iVec2(1,1), self.size, self.textcolor, TEXT_CENTER + TEXT_MIDDLE) else self:AddTextRect(self.position, self.size, self.textcolor, TEXT_CENTER + TEXT_MIDDLE) end end function widget:Draw() --Update position and size self.primitives[1].position = self.position self.primitives[1].size = self.size self.primitives[2].position = self.position self.primitives[2].size = self.size self.primitives[3].size = self.size --Update the border color based on the current hover state if self.hovered == true then self.primitives[2].color = self.hoverbordercolor else self.primitives[2].color = self.bordercolor end --Offset the text when button is pressed if self.pushed == true then self.primitives[3].position = self.position + iVec2(1,1) else self.primitives[3].position = self.position end end This is arguably harder to use than the Leadwerks 4 system, but it gives you advanced capabilities and better performance that the previous design did not allow.
    • By reepblue in reepblue's Blog 1
      Premake is multiplication project maker.Unlike CMake, it simply generates a project file for the given IDE giving you a clean result. You only need the one light weight executable and a lua script for this to work.  I've spent today setting it up with Leadwerks. I haven't tested Linux yet, but it should work.
      My premake5.lua file:
      g_LeadwerksHeaderPath = "./Engine/Include" g_LeadwerksLibPath = "./Engine/Libs" function GlobalSettings() -- Include Directories includedirs { "%{prj.name}", "%{g_LeadwerksHeaderPath}", "%{g_LeadwerksHeaderPath}/Libraries/SDL2-2.0.10/include", "%{g_LeadwerksHeaderPath}/Libraries/NewtonDynamics/sdk/dgCore", "%{g_LeadwerksHeaderPath}/Libraries/NewtonDynamics/sdk/dgNewton", "%{g_LeadwerksHeaderPath}/Libraries/libvorbis/include", "%{g_LeadwerksHeaderPath}/Libraries/libogg/include", "%{g_LeadwerksHeaderPath}/Libraries/openssl/include", "%{g_LeadwerksHeaderPath}/Libraries/VHACD/src/VHACD_Lib/inc", "%{g_LeadwerksHeaderPath}/Libraries/glslang", "%{g_LeadwerksHeaderPath}/Libraries/freetype-2.4.7/include", "%{g_LeadwerksHeaderPath}/Libraries/OpenAL/include", "%{g_LeadwerksHeaderPath}/Libraries/NewtonDynamics/sdk/dMath", "%{g_LeadwerksHeaderPath}/Libraries/NewtonDynamics/sdk/dgTimeTracker", "%{g_LeadwerksHeaderPath}/Libraries/NewtonDynamics/sdk/dContainers", "%{g_LeadwerksHeaderPath}/Libraries/NewtonDynamics/sdk/dCustomJoints", "%{g_LeadwerksHeaderPath}/Libraries/RecastNavigation/RecastDemo/Include", "%{g_LeadwerksHeaderPath}/Libraries/RecastNavigation/DetourCrowd/Include", "%{g_LeadwerksHeaderPath}/Libraries/RecastNavigation/DetourTileCache/Include", "%{g_LeadwerksHeaderPath}/Libraries/RecastNavigation/DebugUtils/Include", "%{g_LeadwerksHeaderPath}/Libraries/RecastNavigation/Recast/Include", "%{g_LeadwerksHeaderPath}/Libraries/RecastNavigation/Detour/Include", "%{g_LeadwerksHeaderPath}/Libraries/tolua++-1.0.93/include", "%{g_LeadwerksHeaderPath}/Libraries/lua-5.1.4", "%{g_LeadwerksHeaderPath}/Libraries/glew-1.6.0/include/GL", "%{g_LeadwerksHeaderPath}/Libraries/glew-1.6.0/include", "%{g_LeadwerksHeaderPath}/Libraries/enet-1.3.1/include", "%{g_LeadwerksHeaderPath}/Libraries/zlib-1.2.5", "%{g_LeadwerksHeaderPath}/Libraries/freetype-2.4.3/include" } -- Global Defines: defines { "__STEAM__", "_CUSTOM_JOINTS_STATIC_LIB", "FT2_BUILD_LIBRARY", "LEADWERKS_3_1", "DG_DISABLE_ASSERT", "OPENGL", "_NEWTON_STATIC_LIB", "_STATICLIB" } -- Windows Exclusive: filter "system:windows" systemversion "latest" pchsource "%{prj.name}/stdafx.cpp" links { "libcryptoMT.lib", "libsslMT.lib", "Rpcrt4.lib", "crypt32.lib", "libcurl.lib", "msimg32.lib", "lua51.lib", "steam_api.lib", "ws2_32.lib", "Glu32.lib", "libovrd.lib", "OpenGL32.lib", "winmm.lib", "Psapi.lib", "OpenAL32.lib", "SDL2.lib", "Leadwerks.lib" } libdirs { "%{g_LeadwerksLibPath}/Windows/x86", "%{g_LeadwerksLibPath}/Windows/x86/%{cfg.buildcfg}" } defines { "PSAPI_VERSION=1", "PTW32_STATIC_LIB", "PTW32_BUILD", "_NEWTON_USE_LIB", "_LIB", "DG_USE_NORMAL_PRIORITY_THREAD", "GLEW_STATIC", "WINDOWS", "WIN32", "OS_WINDOWS", "PLATFORM_WINDOWS", "_WIN_32_VER" } buildoptions { "/D \"SLB_LIBRARY\"", } flags { "NoMinimalRebuild" } linkoptions { "/NODEFAULTLIB:MSVCRT.lib", "/NODEFAULTLIB:MSVCRTD.lib" } -- Linux Exclusive: filter "system:linux" systemversion "latest" linkoptions { "-ldl", "-lopenal", "-lGL", "-lGLU", "-lX11", "-lXext", "-lXrender", "-lXft", "-lpthread", "-lcurl", --"-lSDL2", "%{g_LeadwerksLibPath}/Linux/libluajit.a", "%{gameDir}/libopenvr_api.so" } defines { "ZLIB", "PLATFORM_LINUX", "unix", "_POSIX_VER", "_POSIX_VER_64", "DG_THREAD_EMULATION", "DG_USE_THREAD_EMULATION", "GL_GLEXT_PROTOTYPES", "LUA_USE_LINUX", "_GLIBCXX_USE_CXX11_ABI", "_CUSTOM_JOINTS_STATIC_LIB" } linkoptions { "%{g_LeadwerksLibPath}/Linux/%{cfg.buildcfg}/Leadwerks.a" } -- Debug Build: filter "configurations:Debug" runtime "Debug" symbols "on" targetsuffix ".debug" defines { "DEBUG", "_DEBUG" } if os.target() == "windows" then links { "newton_d.lib", "dContainers_d.lib", "dCustomJoints_d.lib" } end -- Release Build: filter "configurations:Release" runtime "Release" optimize "on" if os.target() == "windows" then buildoptions { "/MP" } links { "newton.lib", "dContainers.lib", "dCustomJoints.lib" } end end function GenerateLuaApp() workspace "PremakeTest" architecture "x86" --architecture "x86_64" startproject "LuaApp" configurations { "Debug", "Release" } -- Test application project "LuaApp" kind "ConsoleApp" language "C++" location "%{prj.name}" staticruntime "on" -- Project Directory: projectDir = "%{prj.name}/" -- Game Directory: gameDir = _WORKING_DIR .. "/../Projects/%{prj.name}" -- OBJ Directory objdir (projectDir .. "%{cfg.buildcfg}_%{prj.name}") targetdir (gameDir) files { "%{prj.name}/**.h", "%{prj.name}/**.cpp" } pchheader "stdafx.h" -- Custom Defines defines { "__TEST_ME_", } GlobalSettings() end newaction { trigger = "luaapp", description = "Builds the stock lua app", execute = GenerateLuaApp() } if _ACTION == "luaapp" then GenerateLuaApp() end Then I just have batch file that builds the project file.
      "devtools/premake5.exe" vs2017 luaapp pause My impressions are more positive on this than CMake as CMake creates a lot of extra files to do real time updating if the CMakeList file is updated. Premake simply just builds the project file and that's it. It really reminds me of VPC stuff I had to deal with in my modding days. Really interested to how codelite projects generate on Linux.
×
×
  • Create New...