Jump to content

3 Ways Leadwerks Game Engine 5 Makes Game Programming Easier

Josh

2,403 views

Leadwerks Game Engine 5 moves Leadwerks forward into the future with massive performance increases and more advanced features, it also makes game development easier than ever before with three great new programming features.

Shared Pointers

I could write a whole article about the benefits of shared pointers.  Shared pointers are basically a simple form of garbage collection that relieves you from the need to manually delete objects, but doesn't suffer from the slow speed of full garbage collection.like C# uses.

In Leadwerks 4 we need to keep track of object reference counts by using the Release command when we are done with them:

Texture *texture = Texture::Load("Materials/Bricks/brick01.tex");
Material *material = Material::Create()
material->SetTexture(texture);
Model *model = Model::Box();
box->SetMaterial(material);
material->Release();
if (texture) texture->Release();

In Leadwerks 5 we never have to worry about calling Release() or (less commonly used) AddRef() because reference counts of shared pointers are tracked automatically.  The code below would cause a memory leak in Leadwerks 4 but is perfectly fine to use in Leadwerks 5:

auto material = Material::Create()
material->SetTexture(Texture::Load("Materials/Bricks/brick01.tex"));
auto model = Model::Box();
box->SetMaterial(material);

This even works with entities.  As soon as a variable goes out of scope the object is deleted:

if (true)
{
	auto model = Model::Box();
}// automatic deletion occurs here

1303-and-itsgone.jpg.cb17acc011c706142b7d8cf55eecd733.jpg

We can prevent deletion of an object by either keeping the variable in our code, or keeping a container that holds it.  In the case of map loading, the Map:Load() will return a structure that contains all the entity handles so they stay in memory.  Want to delete a camera?  It's easy:

camera = NULL;// poof!

There are still some details to work out but so far this approach is working great.

Another great benefit of shared pointers is that you can completely eliminate the need for big complicated destructors like this one.  All those objects will be automatically deleted when they go out of scope:

OpenGLCamera::~OpenGLCamera()
{
	for (int i=0; i<8; ++i)
	{
		if (shader_ambient[i])
		{
			shader_ambient[i]->Release();
			shader_ambient[i]=NULL;
		}
		for (int n = 0; n < 2; ++n)
		{
			for (int q = 0; q < 2; ++q)
			{
				for (int p = 0; p < 2; ++p)
				{
					if (shader_directional[i][n][q][p])
					{
						shader_directional[i][n][q][p]->Release();
						shader_directional[i][n][q][p] = NULL;
					}
					if (shader_directional_volume[i][n][q][p])
					{
						shader_directional_volume[i][n][q][p]->Release();
						shader_directional_volume[i][n][q][p] = NULL;
					}
					if (shader_point[i][n][q][p])
					{
						shader_point[i][n][q][p]->Release();
						shader_point[i][n][q][p] = NULL;
					}
					if (shader_point_volume[i][n][q][p])
					{
						shader_point_volume[i][n][q][p]->Release();
						shader_point_volume[i][n][q][p] = NULL;
					}
					if (shader_spot_volume[i][n][q][p])
					{
						shader_spot_volume[i][n][q][p]->Release();
						shader_spot_volume[i][n][q][p] = NULL;
					}
					if (shader_environment[i][n][q][p])
					{
						shader_environment[i][n][q][p]->Release();
						shader_environment[i][n][q][p] = NULL;
					}
					for (int usedecal = 0; usedecal < 2; usedecal++)
					{
						if (shader_spot[i][n][q][usedecal][p])
						{
							shader_spot[i][n][q][usedecal][p]->Release();
							shader_spot[i][n][q][usedecal][p] = NULL;
						}
					}
				}
			}
		}
	}
}

That entire function has been commented out in Leadwerks Game Engine 5. :D

Finally, shared pointers eliminate a problem that is the bane of all programmers' existence.  When used correctly, you can you can say goodbye to invalid and uninitialized pointers forever!  Yet shared pointers, unlike garbage collection, are fast to use and don't slow your game down.

Automatic Typing

The use of C++11 in Leadwerks Game Engine 5 gives us automatic typing of variables with the auto keyword.  We can simply something like this:

shared_ptr<Model> model = Model::Box();

To just this:

auto model = Model::Box();

If you have long complicated type names this makes life a million times easier:

for (std::list<shared_ptr<Entity> >::iterator it = list.begin(); it!= list.end(); it++)
{
	shared_ptr<Entity> entity = *it;
	entity->SetPosition(1,2,3);
}

Here's the same code simplified with auto (and range-based loops thanks to @Roland and @thehankinator.  Look how much more readable it is:

for (auto entity : list)
{
	entity->SetPosition(1,2,3);
}

This isn't completely new, but Leadwerks 5 is the first version built exclusively for C++11 features.

More Explicit API

Leadwerks 4 uses several bound states to store a current world and context.  These are global variables that are mostly invisible to the user.  This causes problems with multithreaded programming because two threads might try to change or access the bound state at the same time.

World *world1 = World::Create();
Model *model1 = Model::Box();

World *world2 = World::Create();
Model *model2 = Model::Box();
World::SetCurrent(world1);

Model *model3 = Model::Box();

Quick, which world does "model3" belong to?  Leadwerks 5 gets rid of the concept of bound states and requires you to explicitly specify the object you want to use.  Here's how the above code would look in Leadwerks 5:

auto world1 = World::Create();
auto model1 = Model::Box(world1);

auto world2 = World::Create();
auto model2 = Model::Box(world2);

auto model3 = Model::Box(world1);

Not only is the second example easier to understand, it's also one line shorter.

In a similar manner, the idea of a "current" context will be eliminated.  When you render a world you will need to explicitly specify which context to render to:

world->Render(context)

These programming features will make it easier than ever to code games with Leadwerks.



4 Comments


Recommended Comments

Looks great 

This one could be even more simple

for each( auto entity in list )
{
    entity->SetPosition(1,2,3);
}

instead of 

for (auto it = list.begin(); it!= list.end(); it++)
{
    auto entity = *it;
    entity->SetPosition(1,2,3);
}

 

Share this comment


Link to comment
21 minutes ago, Roland said:

Looks great 

This one could be even more simple


for each( auto entity in list )
{
    entity->SetPosition(1,2,3);
}

 

Is that a Visual Studio only feature?

Share this comment


Link to comment
27 minutes ago, Josh said:

Is that a Visual Studio only feature?

Ranged based for loops were added to the C++ standard in c++11, not a MSVC only thing. I've not seen the exact syntax that Roland used but this is how I do it in MSVC 2015  and GCC.

for (auto&& entity : list)
{
	entity->SetPosition(1,2,3);
}

( auto&& ensures you get a reference and no copies are made)

http://en.cppreference.com/w/cpp/language/range-for

https://stackoverflow.com/questions/26991393/what-does-auto-e-do-in-range-based-for-loops

Share this comment


Link to comment
2 hours ago, thehankinator said:

Ranged based for loops were added to the C++ standard in c++11, not a MSVC only thing. I've not seen the exact syntax that Roland used but this is how I do it in MSVC 2015  and GCC.


for (auto&& entity : list)
{
	entity->SetPosition(1,2,3);
}

( auto&& ensures you get a reference and no copies are made)

http://en.cppreference.com/w/cpp/language/range-for

https://stackoverflow.com/questions/26991393/what-does-auto-e-do-in-range-based-for-loops

Yes that is even better. Will change my loops to that

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 1
      I started to implement quads for tessellation, and at that point the shader system reached the point of being unmanageable. Rendering an object to a shadow map and to a color buffer are two different processes that require two different shaders. Turbo introduces an early Z-pass which can use another shader, and if variance shadow maps are not in use this can be a different shader from the shadow shader. Rendering with tessellation requires another set of shaders, with one different set for each primitive type (isolines, triangles, and quads). And then each one of these needs a masked and opaque option, if alpha discard is enabled.
      All in all, there are currently 48 different shaders a material could use based on what is currently being drawn. This is unmanageable.
      To handle this I am introducing the concept of a "shader family". This is a JSON file that lists all possible permutations of a shader. Instead of setting lots of different shaders in a material, you just set the shader family one:
      shaderFamily: "PBR.json" Or in code:
      material->SetShaderFamily(LoadShaderFamily("PBR.json")); The shader family file is a big JSON structure that contains all the different shader modules for each different rendering configuration: Here are the partial contents of my PBR.json file:
      { "turboShaderFamily" : { "OPAQUE": { "default": { "base": { "vertex": "Shaders/PBR.vert.spv", "fragment": "Shaders/PBR.frag.spv" }, "depthPass": { "vertex": "Shaders/Depthpass.vert.spv" }, "shadow": { "vertex": "Shaders/Shadow.vert.spv" } }, "isolines": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Isolines.tesc.spv", "tessellationEvaluation": "Shaders/Isolines.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Isolines.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Isolines.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Isolines.tesc.spv", "tessellationEvaluation": "DepthPass_Isolines.tese.spv" } }, "triangles": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Triangles.tesc.spv", "tessellationEvaluation": "Shaders/Triangles.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Triangles.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Triangles.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Triangles.tesc.spv", "tessellationEvaluation": "DepthPass_Triangles.tese.spv" } }, "quads": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Quads.tesc.spv", "tessellationEvaluation": "Shaders/Quads.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Quads.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Quads.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Quads.tesc.spv", "tessellationEvaluation": "DepthPass_Quads.tese.spv" } } } } } A shader family file can indicate a root to inherit values from. The Blinn-Phong shader family pulls settings from the PBR file and just switches some of the fragment shader values.
      { "turboShaderFamily" : { "root": "PBR.json", "OPAQUE": { "default": { "base": { "fragment": "Shaders/Blinn-Phong.frag.spv" } }, "isolines": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } }, "triangles": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } }, "quads": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } } } } } If you want to implement a custom shader, this is more work because you have to define all your changes for each possible shader variation. But once that is done, you have a new shader that will work with all of these different settings, which in the end is easier. I considered making a more complex inheritance / cascading schema but I think eliminating ambiguity is the most important goal in this and that should override any concern about the verbosity of these files. After all, I only plan on providing a couple of these files and you aren't going to need any more unless you are doing a lot of custom shaders. And if you are, this is the best solution for you anyways.
      Consequently, the baseShader, depthShader, etc. values in the material file definition are going away. Leadwerks .mat files will always use the Blinn-Phong shader family, and there is no way to change this without creating a material file in the new JSON material format.
      The shader class is no longer derived from the Asset class because it doesn't correspond to a single file. Instead, it is just a dumb container. A ShaderModule class derived from the Asset class has been added, and this does correspond with a single .spv file. But you, the user, won't really need to deal with any of this.
      The result of this is that one material will work with tessellation enabled or disabled, quad, triangle, or line meshes, and animated meshes. I also added an optional parameter in the CreatePlane(), CreateBox(), and CreateQuadSphere() commands that will create these primitives out of quads instead of triangles. The main reason for supporting quad meshes is that the tessellation is cleaner when quads are used. (Note that Vulkan still displays quads in wireframe mode as if they are triangles. I think the renderer probably converts them to normal triangles after the tessellation stage.)


      I also was able to implement PN Quads, which is a quad version of the Bezier curve that PN Triangles add to tessellation.



      Basically all the complexity is being packed into the shader family file so that these decisions only have to be made once instead of thousands of times for each different material.
    • By Josh in Josh's Dev Blog 0
      I'm back from I/ITSEC. This conference is basically like the military's version of GDC. VR applications built with Leadwerks took up about half of Northrop Grumman's booth. There were many interesting discussions about new technology and I received a very warm reception. I feel very positive about our new technology going forward.

      I am currently reworking the text field widget script to work with our persistent 2D objects. This is long and boring but needs to be done. Not much else to say right now.
    • By Josh in Josh's Dev Blog 4
      Here are some screenshots showing more complex interface items scaled at different resolutions. First, here is the interface at 100% scaling:

      And here is the same interface at the same screen resolution, with the DPI scaling turned up to 150%:

      The code to control this is sort of complex, and I don't care. GUI resolution independence is a complicated thing, so the goal should be to create a system that does what it is supposed to do reliably, not to make complicated things simpler at the expense of functionality.
      function widget:Draw(x,y,width,height) local scale = self.gui:GetScale() self.primitives[1].size = iVec2(self.size.x, self.size.y - self.tabsize.y * scale) self.primitives[2].size = iVec2(self.size.x, self.size.y - self.tabsize.y * scale) --Tabs local n local tabpos = 0 for n = 1, #self.items do local tw = self:TabWidth(n) * scale if n * 3 > #self.primitives - 2 then self:AddRect(iVec2(tabpos,0), iVec2(tw, self.tabsize.y * scale), self.bordercolor, false, self.itemcornerradius * scale) self:AddRect(iVec2(tabpos+1,1), iVec2(tw, self.tabsize.y * scale) - iVec2(2 * scale,-1 * scale), self.backgroundcolor, false, self.itemcornerradius * scale) self:AddTextRect(self.items[n].text, iVec2(tabpos,0), iVec2(tw, self.tabsize.y*scale), self.textcolor, TEXT_CENTER + TEXT_MIDDLE) end if self:SelectedItem() == n then self.primitives[2 + (n - 1) * 3 + 1].position = iVec2(tabpos, 0) self.primitives[2 + (n - 1) * 3 + 1].size = iVec2(tw, self.tabsize.y * scale) + iVec2(0,2) self.primitives[2 + (n - 1) * 3 + 2].position = iVec2(tabpos + 1, 1) self.primitives[2 + (n - 1) * 3 + 2].color = self.selectedtabcolor self.primitives[2 + (n - 1) * 3 + 2].size = iVec2(tw, self.tabsize.y * scale) - iVec2(2,-1) self.primitives[2 + (n - 1) * 3 + 3].color = self.hoveredtextcolor self.primitives[2 + (n - 1) * 3 + 1].position = iVec2(tabpos,0) self.primitives[2 + (n - 1) * 3 + 2].position = iVec2(tabpos + 1, 1) self.primitives[2 + (n - 1) * 3 + 3].position = iVec2(tabpos,0) else self.primitives[2 + (n - 1) * 3 + 1].size = iVec2(tw, self.tabsize.y * scale) self.primitives[2 + (n - 1) * 3 + 2].color = self.tabcolor self.primitives[2 + (n - 1) * 3 + 2].size = iVec2(tw, self.tabsize.y * scale) - iVec2(2,2) if n == self.hovereditem then self.primitives[2 + (n - 1) * 3 + 3].color = self.hoveredtextcolor else self.primitives[2 + (n - 1) * 3 + 3].color = self.textcolor end self.primitives[2 + (n - 1) * 3 + 1].position = iVec2(tabpos,2) self.primitives[2 + (n - 1) * 3 + 2].position = iVec2(tabpos + 1, 3) self.primitives[2 + (n - 1) * 3 + 3].position = iVec2(tabpos,2) end self.primitives[2 + (n - 1) * 3 + 3].text = self.items[n].text tabpos = tabpos + tw - 2 end end  
×
×
  • Create New...