Jump to content

3 Ways Leadwerks Game Engine 5 Makes Game Programming Easier

Josh

1,430 views

Leadwerks Game Engine 5 moves Leadwerks forward into the future with massive performance increases and more advanced features, it also makes game development easier than ever before with three great new programming features.

Shared Pointers

I could write a whole article about the benefits of shared pointers.  Shared pointers are basically a simple form of garbage collection that relieves you from the need to manually delete objects, but doesn't suffer from the slow speed of full garbage collection.like C# uses.

In Leadwerks 4 we need to keep track of object reference counts by using the Release command when we are done with them:

Texture *texture = Texture::Load("Materials/Bricks/brick01.tex");
Material *material = Material::Create()
material->SetTexture(texture);
Model *model = Model::Box();
box->SetMaterial(material);
material->Release();
if (texture) texture->Release();

In Leadwerks 5 we never have to worry about calling Release() or (less commonly used) AddRef() because reference counts of shared pointers are tracked automatically.  The code below would cause a memory leak in Leadwerks 4 but is perfectly fine to use in Leadwerks 5:

auto material = Material::Create()
material->SetTexture(Texture::Load("Materials/Bricks/brick01.tex"));
auto model = Model::Box();
box->SetMaterial(material);

This even works with entities.  As soon as a variable goes out of scope the object is deleted:

if (true)
{
	auto model = Model::Box();
}// automatic deletion occurs here

1303-and-itsgone.jpg.cb17acc011c706142b7d8cf55eecd733.jpg

We can prevent deletion of an object by either keeping the variable in our code, or keeping a container that holds it.  In the case of map loading, the Map:Load() will return a structure that contains all the entity handles so they stay in memory.  Want to delete a camera?  It's easy:

camera = NULL;// poof!

There are still some details to work out but so far this approach is working great.

Another great benefit of shared pointers is that you can completely eliminate the need for big complicated destructors like this one.  All those objects will be automatically deleted when they go out of scope:

OpenGLCamera::~OpenGLCamera()
{
	for (int i=0; i<8; ++i)
	{
		if (shader_ambient[i])
		{
			shader_ambient[i]->Release();
			shader_ambient[i]=NULL;
		}
		for (int n = 0; n < 2; ++n)
		{
			for (int q = 0; q < 2; ++q)
			{
				for (int p = 0; p < 2; ++p)
				{
					if (shader_directional[i][n][q][p])
					{
						shader_directional[i][n][q][p]->Release();
						shader_directional[i][n][q][p] = NULL;
					}
					if (shader_directional_volume[i][n][q][p])
					{
						shader_directional_volume[i][n][q][p]->Release();
						shader_directional_volume[i][n][q][p] = NULL;
					}
					if (shader_point[i][n][q][p])
					{
						shader_point[i][n][q][p]->Release();
						shader_point[i][n][q][p] = NULL;
					}
					if (shader_point_volume[i][n][q][p])
					{
						shader_point_volume[i][n][q][p]->Release();
						shader_point_volume[i][n][q][p] = NULL;
					}
					if (shader_spot_volume[i][n][q][p])
					{
						shader_spot_volume[i][n][q][p]->Release();
						shader_spot_volume[i][n][q][p] = NULL;
					}
					if (shader_environment[i][n][q][p])
					{
						shader_environment[i][n][q][p]->Release();
						shader_environment[i][n][q][p] = NULL;
					}
					for (int usedecal = 0; usedecal < 2; usedecal++)
					{
						if (shader_spot[i][n][q][usedecal][p])
						{
							shader_spot[i][n][q][usedecal][p]->Release();
							shader_spot[i][n][q][usedecal][p] = NULL;
						}
					}
				}
			}
		}
	}
}

That entire function has been commented out in Leadwerks Game Engine 5. :D

Finally, shared pointers eliminate a problem that is the bane of all programmers' existence.  When used correctly, you can you can say goodbye to invalid and uninitialized pointers forever!  Yet shared pointers, unlike garbage collection, are fast to use and don't slow your game down.

Automatic Typing

The use of C++11 in Leadwerks Game Engine 5 gives us automatic typing of variables with the auto keyword.  We can simply something like this:

shared_ptr<Model> model = Model::Box();

To just this:

auto model = Model::Box();

If you have long complicated type names this makes life a million times easier:

for (std::list<shared_ptr<Entity> >::iterator it = list.begin(); it!= list.end(); it++)
{
	shared_ptr<Entity> entity = *it;
	entity->SetPosition(1,2,3);
}

Here's the same code simplified with auto (and range-based loops thanks to @Roland and @thehankinator.  Look how much more readable it is:

for (auto entity : list)
{
	entity->SetPosition(1,2,3);
}

This isn't completely new, but Leadwerks 5 is the first version built exclusively for C++11 features.

More Explicit API

Leadwerks 4 uses several bound states to store a current world and context.  These are global variables that are mostly invisible to the user.  This causes problems with multithreaded programming because two threads might try to change or access the bound state at the same time.

World *world1 = World::Create();
Model *model1 = Model::Box();

World *world2 = World::Create();
Model *model2 = Model::Box();
World::SetCurrent(world1);

Model *model3 = Model::Box();

Quick, which world does "model3" belong to?  Leadwerks 5 gets rid of the concept of bound states and requires you to explicitly specify the object you want to use.  Here's how the above code would look in Leadwerks 5:

auto world1 = World::Create();
auto model1 = Model::Box(world1);

auto world2 = World::Create();
auto model2 = Model::Box(world2);

auto model3 = Model::Box(world1);

Not only is the second example easier to understand, it's also one line shorter.

In a similar manner, the idea of a "current" context will be eliminated.  When you render a world you will need to explicitly specify which context to render to:

world->Render(context)

These programming features will make it easier than ever to code games with Leadwerks.



4 Comments


Recommended Comments

Looks great 

This one could be even more simple

for each( auto entity in list )
{
    entity->SetPosition(1,2,3);
}

instead of 

for (auto it = list.begin(); it!= list.end(); it++)
{
    auto entity = *it;
    entity->SetPosition(1,2,3);
}

 

Share this comment


Link to comment
21 minutes ago, Roland said:

Looks great 

This one could be even more simple


for each( auto entity in list )
{
    entity->SetPosition(1,2,3);
}

 

Is that a Visual Studio only feature?

Share this comment


Link to comment
27 minutes ago, Josh said:

Is that a Visual Studio only feature?

Ranged based for loops were added to the C++ standard in c++11, not a MSVC only thing. I've not seen the exact syntax that Roland used but this is how I do it in MSVC 2015  and GCC.

for (auto&& entity : list)
{
	entity->SetPosition(1,2,3);
}

( auto&& ensures you get a reference and no copies are made)

http://en.cppreference.com/w/cpp/language/range-for

https://stackoverflow.com/questions/26991393/what-does-auto-e-do-in-range-based-for-loops

Share this comment


Link to comment
2 hours ago, thehankinator said:

Ranged based for loops were added to the C++ standard in c++11, not a MSVC only thing. I've not seen the exact syntax that Roland used but this is how I do it in MSVC 2015  and GCC.


for (auto&& entity : list)
{
	entity->SetPosition(1,2,3);
}

( auto&& ensures you get a reference and no copies are made)

http://en.cppreference.com/w/cpp/language/range-for

https://stackoverflow.com/questions/26991393/what-does-auto-e-do-in-range-based-for-loops

Yes that is even better. Will change my loops to that

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 5
      You might have seen this graphic comparing the size of the world in different games. I've played Fuel, and never reached the end of the world in that game. You can drive for a very long time on those roads.

      We want to use the new engine for realistic simulations of air and ground movements. At normal cruising altitude of a commercial airliner, the pilot has a view range of about 400 kilometers. The image below shows that area (800 x 800 km). You can see the areas of the biggest games ever fit neatly into the corner of just our visible area.

      The gray space above is not the total world size, it is just the area you can see at once from high altitude. The total world size is about 50 times bigger.
      This is what I am working on now.
    • By Josh in Josh's Dev Blog 26
      Gamers have always been fascinated with the idea of endless areas to roam.  It seems we are always artificially constrained within a small area to play in, and the possibility of an entire world outside those bounds is tantalizing.  The game FUEL captured this idea by presenting the player with an enormous world that took hours to drive across:
      In the past, I always implemented terrain with one big heightmap texture, which had a fixed size like 1024x1024, 2048x2048, etc.  However, our vegetation system, featured in the book Game Engine Gems 3, required a different approach.  There was far too many instances of grass, trees, and rocks to store them all in memory, and I wanted to do something really radical.  The solution was to create an algorithm that could instantly calculate all the vegetation instances in a given area.  The algorithm would always produce the same result, but the actual data would never be saved, it was just retrieved in the area where you needed it, when you needed it.  So with a few modifications, our vegetation system is already set up to generate infinite instances far into the distance.

      However, terrain is problematic.  Just because an area is too far away to see doesn't mean it should stop existing.  If we don't store the terrain in memory then how do we prevent far away objects from falling into the ground?  I don't like the idea of disabling far away physics because it makes things very complex for the end user.  There are definitely some tricks we can add like not updating far away AI agents, but I want everything to just work by default, to the best of my ability.
      It was during the development of the vegetation system that I realized the MISSING PIECE to this puzzle.  The secret is in the way collision works with vegetation.  When any object moves all the collidable vegetation instances around it are retrieved and collision is performed on this fetched data.  We can do the exact same thing with terrain   Imagine a log rolling across the terrain.  We could use an algorithm to generate all the triangles it potentially could collide with, like in the image below.

      You can probably imagine how it would be easy to lay out an infinite grid of flat squares around the player, wherever he is standing in the world.

      What if we only save heightmap data for the squares the user modifies in the editor?  They can't possibly modify the entire universe, so let's just save their changes and make the default terrain flat.  It won't be very interesting, but it will work, right?
      What if instead of being flat by default, there was a function we had that would procedurally calculate the terrain height at any point?  The input would be the XZ position in the world and the output would be a heightmap value.

      If we used this, then we would have an entire procedurally generated terrain combined with parts that the developer modifies by hand with the terrain tools.  Only the hand-modified parts would have to be saved to a series of files that could be named "mapname_x_x.patch", i.e. "magickingdom_54_72.patch".  These patches could be loaded from disk as needed, and deleted from memory when no longer in use.
      The real magic would be in developing an algorithm that could quickly generate a height value given an XZ position.  A random seed could be introduced to allow us to create an endless variety of procedural landscapes to explore.  Perhaps a large brush could even be used to assign characteristics to an entire region like "mountainy", "plains", etc.
      The possibilities of what we can do in Leadwerks Engine 5 are intriguing.  Granted I don't have all the answers right now, but implementing a system like this would be a major step forward that unlocks an enormous world to explore.  What do you think?

    • By Haydenmango in Snowboarding Development Blog 6
      So I've been researching snowboarding lately to get an idea of what animations and mechanics I need to create for my game.  I have learned lots of interesting things since I've only seen snow once or twice in my entire life and have never even tried snowboarding or any other board sports (skateboarding, surfing, etc.) for that matter.
       
      Snowboarding tricks are quite interesting as they are mostly derived from skateboarding.  Snowboarding tricks pay homage to their equivalent skating tricks by sharing many concepts and names.  For example basic grabs in snowboarding share the same concepts and names as skateboarding: indy, mute, method, stalefish, nosegrab, and tailgrab.  Something interesting to note is in snowboarding you can grab Tindy or Tailfish but this is considered poor form since these grabs can't be done on a skateboard (due to the board not being attached to the skaters feet) and grabbing these areas is generally something a novice snowboarder does when failing or "half-assing" a normal grab.  Check out this diagram to see how grabs work -
       
       
      So, after reading lots of text descriptions for tricks I was still confused by what all these terms meant and how they were actually applied.  So my next step was to look up these tricks actually being done and I found some really cool videos showing off how to do various tricks.  This video in particular is the best reference material I've found as it contains nearly every trick back to back with labeled names and some tweaks -
       
      Sadly my rigged model doesn't handle leg animations with the snowboard that well so I can't animate as many tricks as I want to.  Regardless there will still be around 15 total grab/air tricks in the game.  Now it's time for me to stop procrastinating and start animating!  
×
×
  • Create New...