Jump to content

Three Massive improvements the new engine will make in your life



As I work with the new engine more and more I keep finding new ways it makes life happy and productive.

Smart Pointers

I have talked about how great these are at length, but I keep finding new reasons I love them. The behind-the-scenes design has been a lot of fun, and it's so cool to be able to write lines of code like this without any fear of memory leaks:


What do you think that code does? It plays a sound, keeps it in memory, and then unloads it when the sound finishes playing (assuming it is not loaded anywhere else). Smart Pointers make the new API almost magical to work with, and they don't have the performance overhead that garbage collection would, and they work great with Lua script.

User Interface

Leadwerks GUI will be used in our new editor, which allows me to innovate in many new ways. But we're also using Visual Studio Code for the script editor, which gives you a sleek modern scripting environment.


Better Scene Management

Cached shadow maps.are a feature in Leadwerks 4 that separate geometry into static and dynamic shadow-casting types. Static shadows are rendered into a cache texture. When the shadow updates only the dynamic objects are redrawn on top of the saved static cache. This requires that you set the light shadow mode to Dynamic|Static|Buffered. In the new engine this will be automatic. By default lights will use a shadow cache, and if the light moves after the first shadow render, the cache will be disabled. Any geometry can be marked as static in the new editor. Static objects are more optimal for lighting, navigation, and global illumination, and will not respond to movement commands. (This can also be used to mark which brushes should get merged when the scene is loaded).

If you don't explicitly select whether an object in the scene should be static or not, the engine will guess. For example, any object with non-zero mass or a script attached to it should not be automatically marked as static.

If you didn't understand any of that, don't worry! Just don't do anything, and your scene will already be running efficiently, because the engine makes intelligent choices based on your game's behavior.

It's all turning out really nice. :D

  • Like 7


Recommended Comments

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 10
      Current generation graphics hardware only supports up to a 32-bit floating point depth buffer, and that isn't adequate for large-scale rendering because there isn't enough precision to make objects appear in the correct order and prevent z-fighting.

      After trying out a few different approaches I found that the best way to support large-scale rendering is to allow the user to create several cameras. The first camera should have a range of 0.1-1000 meters, the second would use the same near / far ratio and start where the first one left off, with a depth range of 1000-10,000 meters. Because the ratio of near to far ranges is what matters, not the actual distance, the numbers can get very big very fast. A third camera could be added with a range out to 100,000 kilometers!
      The trick is to set the new Camera::SetClearMode() command to make it so only the furthest-range camera clears the color buffer. Additional cameras clear the depth buffer and then render on top of the previous draw. You can use the new Camera::SetOrder() command to ensure that they are drawn in the order you want.
      auto camera1 = CreateCamera(world); camera1->SetRange(0.1,1000); camera1->SetClearMode(CLEAR_DEPTH); camera1->SetOrder(1); auto camera2 = CreateCamera(world); camera2->SetRange(1000,10000); camera2->SetClearMode(CLEAR_DEPTH); camera2->SetOrder(2); auto camera3 = CreateCamera(world); camera3->SetRange(10000,100000000); camera3->SetClearMode(CLEAR_COLOR | CLEAR_DEPTH); camera3->SetOrder(3); Using this technique I was able to render the Earth, sun, and moon to-scale. The three objects are actually sized correctly, at the correct distance. You can see that from Earth orbit the sun and moon appear roughly the same size. The sun is much bigger, but also much further away, so this is exactly what we would expect.

      You can also use these features to render several cameras in one pass to show different views. For example, we can create a rear-view mirror easily with a second camera:
      auto mirrorcam = CreateCamera(world); mirrorcam->SetParent(maincamera); mirrorcam->SetRotation(0,180,0); mirrorcam=>SetClearMode(CLEAR_COLOR | CLEAR_DEPTH); //Set the camera viewport to only render to a small rectangle at the top of the screen: mirrorcam->SetViewport(framebuffer->GetSize().x/2-200,10,400,50); This creates a "picture-in-picture" effect like what is shown in the image below:

      Want to render some 3D HUD elements on top of your scene? This can be done with an orthographic camera:
      auto uicam = CreateCamera(world); uicam=>SetClearMode(CLEAR_DEPTH); uicam->SetProjectionMode(PROJECTION_ORTHOGRAPHIC); This will make 3D elements appear on top of your scene without clearing the previous render result. You would probably want to move the UI camera far away from the scene so only your HUD elements appear in the last pass.
    • By tipforeveryone in tipforeveryone's Blog 12
      I spent a whole week for learning UE4 with cpp, yep, UE4 is a great engine for sure, but I found out that my mind could not understand the way UE4 works easily. It is too complex and made me tired. Then I returned to my Leadwerks project and felt so familiar. Soooo... sweet, everything is simple as it is
      It felt like I have had a long trip to UE city then return to my hometown. I miss Leadwerks indeed.
      Last year, I thought I could only use Leadwerks with LUA and never touch its CPP side. But I tried my best, learned Cpp for 8 months. Now I am not a cpp pro but I am confident in using this language. At least I can rewrite my whole project in CPP instead. this 3-years project helped me to understand my potential and interest in gamedev.
      I wish Josh be successful in progress of making Turbo, a new hope for much better Leadwerks.
      To all people who are using Leadwerks and help me these years, love you.
    • By Josh in Josh's Dev Blog 2
      Still a lot of things left to do. Now that I have very large-scale rendering working, people want to fill it up with very big terrains. A special system will be required to handle this, which adds another layer to the terrain system. Also, I want to resume work on the voxel GI system, as I feel these results are much better than the performance penalty of ray-tracing. There are a few odds and ends like AI navigation and cascaded shadow maps to finish up.
      I am planning to have the engine more or less finished in the spring, and begin work on the new editor. Our workflow isn't going to change much. The new editor is just going to be a more refined version of what we already have, although it is a complete new program written from scratch, this time in C++.
      It's kind of overwhelming but I have confidence in the whole direction and strategy of this new product.
  • Create New...