Jump to content

Leadwerks 4.7 Beta Available

Josh

548 views

A new build is available on the beta branch on Steam.

  • Updated to Visual Studio 2019.
  • Updated to latest version of OpenVR and Steamworks SDK.
  • Fixed object tracking with seated VR mode. Note that the way seated VR works now is a little different, you need to use the VR orientation instead of just positioning the camera (see below).
  • Added VR:SetRotation() so you can rotate the world around in VR.
  • The VRPlayer script has rotation added to the left controller. Press the touchpad to turn left and right.
  • Any arbitrary rotation will work, including roll and pitch.

Here are the offset commands:

static void VR::SetOffset(const Vec3& position);
static void VR::SetOffset(const float x, const float y, const float z);
static void VR::SetOffset(const float x, const float y, const float z, const float pitch, const float yaw, const float roll);
static void VR::SetOffset(const Vec3& position, const Vec3& rotation);
static void VR::SetOffset(const Vec3& position, const Quat& rotation);
static Vec3 VR::GetOffset();
static Vec3 VR::GetRotation();
static Quat VR::GetQuaternion();

ย 

  • Like 2


8 Comments


Recommended Comments

Quote

Any arbitrary rotation will work, including roll and pitch

Does this mean that we won't have to worry about euler/quaternion any more?ย  SetRotation and GetRotation will just work, without having to deal with conversions?

  • Like 1

Share this comment


Link to comment
15 hours ago, gamecreator said:

Does this mean that we won't have to worry about euler/quaternion any more?ย  SetRotation and GetRotation will just work, without having to deal with conversions?

Can you be more specific? Eulers and quaternions will both work. Eulers are easy to visualize, and are fine for rotation on one axis (as most people will be using it) but quaternions are needed if you are making a space sim or something like that.

Share this comment


Link to comment

There is no global euler rotation stored. If you are setting a euler rotation in global space (and the parent is not NULL) then there is a conversion process whereby the euler is transformed into a quaternion. When you call GetRotation() with the global flag set, the rotation is extracted from the global 4x4 matrix and converted to a euler and returned.

This is the source code of the GetRotation() command:

	Vec3 Entity::GetRotation(const bool global)
	{
		if (global == true and parent.lock() != nullptr)
		{
			return Vec3(mat.GetRotation());//Mat4::GetRotation() returns a quaternion, this is then converted to a Euler
		}
		else
		{
			return rotation; //returns the local euler rotation, whatever was last set
		}
	}

Only local position, rotation, and scale values are stored, because if the object has a parent, moving the parent would invalidate all those global values and they would require constant recalculation.

Now I have set it so when rotation is set in local space, that rotation is calculated to the local quaternion, but the original rotation value you input is preserved if you call GetRotation() with the global flag set to false, or if there is no parent. I also made it so that Turn() will increment the angle on one axis if the other two axes in the turn value are zero.

But if that local euler gets recalculated for any reason or if a rotation is extracted from the matrix, it is possible for two different values to define the same rotation, like (270,0,0) and (-90,0,0).

  • Like 1

Share this comment


Link to comment

Testing the beta, in 3d view, icons representing entities such as the camera, the lights do not turn in the direction of the camera.ย 

  • Thanks 1

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 2
      I started to implement quads for tessellation, and at that point the shader system reached the point of being unmanageable. Rendering an object to a shadow map and to a color buffer are two different processes that require two different shaders. Turbo introduces an early Z-pass which can use another shader, and if variance shadow maps are not in use this can be a different shader from the shadow shader. Rendering with tessellation requires another set of shaders, with one different set for each primitive type (isolines, triangles, and quads). And then each one of these needs a masked and opaque option, if alpha discard is enabled.
      All in all, there are currently 48 different shaders a material could use based on what is currently being drawn. This is unmanageable.
      To handle this I am introducing the concept of a "shader family". This is a JSON file that lists all possible permutations of a shader. Instead of setting lots of different shaders in a material, you just set the shader family one:
      shaderFamily: "PBR.json" Or in code:
      material->SetShaderFamily(LoadShaderFamily("PBR.json")); The shader family file is a big JSON structure that contains all the different shader modules for each different rendering configuration: Here are the partial contents of my PBR.json file:
      { "turboShaderFamily" : { "OPAQUE": { "default": { "base": { "vertex": "Shaders/PBR.vert.spv", "fragment": "Shaders/PBR.frag.spv" }, "depthPass": { "vertex": "Shaders/Depthpass.vert.spv" }, "shadow": { "vertex": "Shaders/Shadow.vert.spv" } }, "isolines": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Isolines.tesc.spv", "tessellationEvaluation": "Shaders/Isolines.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Isolines.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Isolines.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Isolines.tesc.spv", "tessellationEvaluation": "DepthPass_Isolines.tese.spv" } }, "triangles": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Triangles.tesc.spv", "tessellationEvaluation": "Shaders/Triangles.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Triangles.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Triangles.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Triangles.tesc.spv", "tessellationEvaluation": "DepthPass_Triangles.tese.spv" } }, "quads": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Quads.tesc.spv", "tessellationEvaluation": "Shaders/Quads.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Quads.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Quads.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Quads.tesc.spv", "tessellationEvaluation": "DepthPass_Quads.tese.spv" } } } } } A shader family file can indicate a root to inherit values from. The Blinn-Phong shader family pulls settings from the PBR file and just switches some of the fragment shader values.
      { "turboShaderFamily" : { "root": "PBR.json", "OPAQUE": { "default": { "base": { "fragment": "Shaders/Blinn-Phong.frag.spv" } }, "isolines": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } }, "triangles": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } }, "quads": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } } } } } If you want to implement a custom shader, this is more work because you have to define all your changes for each possible shader variation. But once that is done, you have a new shader that will work with all of these different settings, which in the end is easier. I considered making a more complex inheritance / cascading schema but I think eliminating ambiguity is the most important goal in this and that should override any concern about the verbosity of these files. After all, I only plan on providing a couple of these files and you aren't going to need any more unless you are doing a lot of custom shaders. And if you are, this is the best solution for you anyways.
      Consequently, the baseShader, depthShader, etc. values in the material file definition are going away. Leadwerks .mat files will always use the Blinn-Phong shader family, and there is no way to change this without creating a material file in the new JSON material format.
      The shader class is no longer derived from the Asset class because it doesn't correspond to a single file. Instead, it is just a dumb container. A ShaderModule class derived from the Asset class has been added, and this does correspond with a single .spv file. But you, the user, won't really need to deal with any of this.
      The result of this is that one material will work with tessellation enabled or disabled, quad, triangle, or line meshes, and animated meshes. I also added an optional parameter in the CreatePlane(), CreateBox(), and CreateQuadSphere() commands that will create these primitives out of quads instead of triangles. The main reason for supporting quad meshes is that the tessellation is cleaner when quads are used. (Note that Vulkan still displays quads in wireframe mode as if they are triangles. I think the renderer probably converts them to normal triangles after the tessellation stage.)


      I also was able to implement PN Quads, which is a quad version of the Bezier curve that PN Triangles add to tessellation.



      Basically all the complexity is being packed into the shader family file so that these decisions only have to be made once instead of thousands of times for each different material.
    • By Josh in Josh's Dev Blog 0
      I'm back from I/ITSEC. This conference is basically like the military's version of GDC. VR applications built with Leadwerks took up about half of Northrop Grumman's booth. There were many interesting discussions about new technology and I received a very warm reception. I feel very positive about our new technology going forward.

      I am currently reworking the text field widget script toย work with our persistent 2D objects. This is long and boring but needs to be done. Not much else to say right now.
    • By Josh in Josh's Dev Blog 4
      Here are some screenshots showing more complex interface items scaled at different resolutions. First, here is the interface at 100% scaling:

      And here is the same interface at the same screen resolution, with the DPI scaling turned up to 150%:

      The code to control this is sort of complex, and I don't care. GUI resolution independence is a complicated thing, so the goal should be to create a system that does what it is supposed to do reliably, not to make complicated things simpler at the expense of functionality.
      function widget:Draw(x,y,width,height) local scale = self.gui:GetScale() self.primitives[1].size = iVec2(self.size.x, self.size.y - self.tabsize.y * scale) self.primitives[2].size = iVec2(self.size.x, self.size.y - self.tabsize.y * scale) --Tabs local n local tabpos = 0 for n = 1, #self.items do local tw = self:TabWidth(n) * scale if n * 3 > #self.primitives - 2 then self:AddRect(iVec2(tabpos,0), iVec2(tw, self.tabsize.y * scale), self.bordercolor, false, self.itemcornerradius * scale) self:AddRect(iVec2(tabpos+1,1), iVec2(tw, self.tabsize.y * scale) - iVec2(2 * scale,-1 * scale), self.backgroundcolor, false, self.itemcornerradius * scale) self:AddTextRect(self.items[n].text, iVec2(tabpos,0), iVec2(tw, self.tabsize.y*scale), self.textcolor, TEXT_CENTER + TEXT_MIDDLE) end if self:SelectedItem() == n then self.primitives[2 + (n - 1) * 3 + 1].position = iVec2(tabpos, 0) self.primitives[2 + (n - 1) * 3 + 1].size = iVec2(tw, self.tabsize.y * scale) + iVec2(0,2) self.primitives[2 + (n - 1) * 3 + 2].position = iVec2(tabpos + 1, 1) self.primitives[2 + (n - 1) * 3 + 2].color = self.selectedtabcolor self.primitives[2 + (n - 1) * 3 + 2].size = iVec2(tw, self.tabsize.y * scale) - iVec2(2,-1) self.primitives[2 + (n - 1) * 3 + 3].color = self.hoveredtextcolor self.primitives[2 + (n - 1) * 3 + 1].position = iVec2(tabpos,0) self.primitives[2 + (n - 1) * 3 + 2].position = iVec2(tabpos + 1, 1) self.primitives[2 + (n - 1) * 3 + 3].position = iVec2(tabpos,0) else self.primitives[2 + (n - 1) * 3 + 1].size = iVec2(tw, self.tabsize.y * scale) self.primitives[2 + (n - 1) * 3 + 2].color = self.tabcolor self.primitives[2 + (n - 1) * 3 + 2].size = iVec2(tw, self.tabsize.y * scale) - iVec2(2,2) if n == self.hovereditem then self.primitives[2 + (n - 1) * 3 + 3].color = self.hoveredtextcolor else self.primitives[2 + (n - 1) * 3 + 3].color = self.textcolor end self.primitives[2 + (n - 1) * 3 + 1].position = iVec2(tabpos,2) self.primitives[2 + (n - 1) * 3 + 2].position = iVec2(tabpos + 1, 3) self.primitives[2 + (n - 1) * 3 + 3].position = iVec2(tabpos,2) end self.primitives[2 + (n - 1) * 3 + 3].text = self.items[n].text tabpos = tabpos + tw - 2 end end ย 
ร—
ร—
  • Create New...