Jump to content

Loading Sounds with JSON

reepblue

130 views

Loading sounds in Leadwerks has always been straight forward. A sound file is loaded from the disk, and with the Source class emits the sound in 3D space. The sound entity also has a play function, but it's only really good for UI sounds. There is also Entity::EmitSound() which will play the sound at the entity's location. (You can also throw in a Source, but it'll auto release the object when it's done.)

While this is OK for small games, larger games in which sounds may change might mean you have to open your class, and adjust the sounds accordingly. What if you use the sound in multiple places and you're happy with the volume and pitch settings from an earlier implementation? You could just redefine the source in a different actor, but why should you?

A solution I came up with comes from SoundScripts from the Source Engine. With that engine, you had to define each sound as a SoundScript entry. This allowed you to define a sound once, and it allowed for other sound settings such as multiple sounds per entry. I thought this over, and with JSON, we can easily create a similar system for Leadwerks 4 and the new engine.

I first started with a dummy script so I can figure out how I wanted the end result to be.

{
    "soundData":
    {
        "Error":
        {
            "file": "Sound/error.wav",
            "volume": 1.0,
            "pitch": 1.0,
            "range": 0.25
        },

        "RandomSound":
        {
            "files":
            {
                "file1": "Sound/Test/tone1.wav",
                "file2": "Sound/Test/tone2.wav",
                "file3": "Sound/Test/tone3.wav"
            },
            
            "volume": 1.0,
            "pitch": 1.0,
            "range": 0.25
        }        
    }
}

In this script, we have two sound entries. We have an error sound (Which is suppose to be the fall back sound for an invalid sound entry) and we have a sound entry that holds multiple files. We want a simple, straight forward. entry like "Error" to work, while also supporting something "RandomSound" which can be used for something like footstep sounds.

The script is streamed and stored into multiple structs in a std::map at the application start. We use the key for the name, and the value is the struct.

typedef struct
{
	std::string files[128];
	char filecount; 
	float volume;
	float pitch;
	float range;
	bool loopmode;

} sounddata_t;

std::map<std::string, sounddata_t> scriptedsounds;

Also notice that we don't store any pointers, just information. To do the next bit, I decided to derive off of the engine's Source class and call it "Speaker". The Speaker class allows us to load sounds via the script entry, and support multiple sounds.

You create one like this, and you have all the functionalities with the Source as before, but a few differences.

	// Speaker:
	auto speaker = CreateSpeaker("RandomSound");

When you use Play() with the speaker class and if the sound entry has a "files" table array, it'll pick a sound at random. You can also use PlayIndex() to play the sound entry in the array. I also added a SetSourceEntity() function which will create a pivot, parent to the target entity. From there, the Play function will always play from the pivot's position. This is a good alternative to Entity::EmitSound(), as you don't need to Copy/Instance the Source before calling the function as that function releases the Source as mentioned earlier. Just play the speaker, and you'll be fine! You can also change the sound entry at anytime by calling SetSoundEntry(const std::string pSoundEntryName); The creation of the Speaker class will start the JSON phrasing. If it has already been done, it will not do it again.

Having sounds being loaded and stored like this opens up a lot of possibles. One thing I plan on implementing is a volume modifier which will adjust the volume based on the games volume setting.Right now, it uses the defined volume setting. It's also a part of another system I have in the works.

  • Like 1


6 Comments


Recommended Comments

2 hours ago, Josh said:

"Speaker" is definitely a better name for the class than "Source". I'm taking that.

Good. But now I need to find a new name for my class. 😢 

Maybe you can modify EmitSound to have a parameter so it'll do the copying of the Speaker for you. IDK I recall that "feature" making me upset using Leadwerks as I didn't expect it to auto release my objects 

Share this comment


Link to comment
5 minutes ago, reepblue said:

Maybe you can modify EmitSound to have a parameter so it'll do the copying of the Speaker for you. IDK I recall that "feature" making me upset using Leadwerks as I didn't expect it to auto release my objects 

That's the wonderful thing about smart pointers, problems like this go away.

Share this comment


Link to comment
3 hours ago, reepblue said:

Good. But now I need to find a new name for my class. 😢 

GameSpeaker?

  • Thanks 1

Share this comment


Link to comment

Renamed my class GameSpeaker. I think I'm going to remove SetSourceEntity() in favor of a function within my BaseActor class.

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 4
      I have been working on 2D rendering off and on since October. Why am I putting so much effort into something that was fairly simple in Leadwerks 4? I have been designing a system in anticipation of some features I want to see in the GUI, namely VR support and in-game 3D user interfaces. These are both accomplished with 2D drawing performed on a texture. Our system of sprite layers, cameras, and sprites was necessary in order to provide enough control to accomplish this.
      I now have 2D drawing to a texture working, this time as an official supported feature. In Leadwerks 4, some draw-to-texture features were supported, but it was through undocumented commands due to the complex design of shared resources between OpenGL contexts. Vulkan does not have this problem because everything, including contexts (or rather, the VK equivalent) is bound to an abstract VkInstance object.

      Here is the Lua code that makes this program:
      --Get the primary display local displaylist = ListDisplays() local display = displaylist[1]; if display == nil then DebugError("Primary display not found.") end local displayscale = display:GetScale() --Create a window local window = CreateWindow(display, "2D Drawing to Texture", 0, 0, math.min(1280 * displayscale.x, display.size.x), math.min(720 * displayscale.y, display.size.y), WINDOW_TITLEBAR) --Create a rendering framebuffer local framebuffer = CreateFramebuffer(window); --Create a world local world = CreateWorld() --Create second camera local texcam = CreateCamera(world) --Create a camera local camera = CreateCamera(world) camera:Turn(45,-45,0) camera:Move(0,0,-2) camera:SetClearColor(0,0,1,1) --Create a texture buffer local texbuffer = CreateTextureBuffer(512,512,1,true) texcam:SetRenderTarget(texbuffer) --Create scene local box = CreateBox(world) --Create render-to-texture material local material = CreateMaterial() local tex = texbuffer:GetColorBuffer() material:SetTexture(tex, TEXTURE_BASE) box:SetMaterial(material) --Create a light local light = CreateLight(world,LIGHT_DIRECTIONAL) light:SetRotation(55,-55,0) light:SetColor(2,2,2,1) --Create a sprite layer. This can be shared across different cameras for control over which cameras display the 2D elements local layer = CreateSpriteLayer(world) texcam:AddSpriteLayer(layer) texcam:SetPosition(0,1000,0)--put the camera really far away --Load a sprite to display local sprite = LoadSprite(layer, "Materials/Sprites/23.svg", 0, 0.5) sprite:MidHandle(true,true) sprite:SetPosition(texbuffer.size.x * 0.5, texbuffer.size.y * 0.5) --Load font local font = LoadFont("Fonts/arial.ttf", 0) --Text shadow local textshadow = CreateText(layer, font, "Hello!", 36 * displayscale.y, TEXT_LEFT, 1) textshadow:SetColor(0,0,0,1) textshadow:SetPosition(50,30) textshadow:SetRotation(90) --Create text text = textshadow:Instantiate(layer) text:SetColor(1,1,1,1) text:SetPosition(52,32) text:SetRotation(90) --Main loop while window:Closed() == false do sprite:SetRotation(CurrentTime() / 30) world:Update() world:Render(framebuffer) end I have also added a GetTexCoords() command to the PickInfo structure. This will calculate the tangent and bitangent for the picked triangle and then calculate the UV coordinate at the picked position. It is necessary to calculate the non-normalized tangent and bitangent to get the texture coordinate, because the values that are stored in the vertex array are normalized and do not include the length of the vectors.
      local pick = camera:Pick(framebuffer, mousepos.x, mousepos.y, 0, true, 0) if pick ~= nil then local texcoords = pick:GetTexCoords() Print(texcoords) end Maybe I will make this into a Mesh method like GetPolygonTexCoord(), which would work just as well but could potentially be useful for other things. I have not decided yet.
      Now that we have 2D drawing to a texture, and the ability to calculate texture coordinates at a position on a mesh, the next step will be to set up a GUI displayed on a 3D surface, and to send input events to the GUI based on the user interactions in 3D space. The texture could be applied to a computer panel, like many of the interfaces in the newer DOOM games, or it could be used as a panel floating in the air that can be interacted with VR controllers.
    • By Josh in Josh's Dev Blog 0
      Putting all the pieces together, I was able to create a GUI with a sprite layer, attach it to a camera with a texture buffer render target, and render the GUI onto a texture applied to a 3D surface. Then I used the picked UV coords to convert to mouse coordinates and send user events to the GUI. Here is the result:

      This can be used for GUIs rendered onto surfaces in your game, or for a user interface that can be interacted with in VR. This example will be included in the next beta update.
    • By Josh in Josh's Dev Blog 4
      I started to implement quads for tessellation, and at that point the shader system reached the point of being unmanageable. Rendering an object to a shadow map and to a color buffer are two different processes that require two different shaders. Turbo introduces an early Z-pass which can use another shader, and if variance shadow maps are not in use this can be a different shader from the shadow shader. Rendering with tessellation requires another set of shaders, with one different set for each primitive type (isolines, triangles, and quads). And then each one of these needs a masked and opaque option, if alpha discard is enabled.
      All in all, there are currently 48 different shaders a material could use based on what is currently being drawn. This is unmanageable.
      To handle this I am introducing the concept of a "shader family". This is a JSON file that lists all possible permutations of a shader. Instead of setting lots of different shaders in a material, you just set the shader family one:
      shaderFamily: "PBR.json" Or in code:
      material->SetShaderFamily(LoadShaderFamily("PBR.json")); The shader family file is a big JSON structure that contains all the different shader modules for each different rendering configuration: Here are the partial contents of my PBR.json file:
      { "turboShaderFamily" : { "OPAQUE": { "default": { "base": { "vertex": "Shaders/PBR.vert.spv", "fragment": "Shaders/PBR.frag.spv" }, "depthPass": { "vertex": "Shaders/Depthpass.vert.spv" }, "shadow": { "vertex": "Shaders/Shadow.vert.spv" } }, "isolines": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Isolines.tesc.spv", "tessellationEvaluation": "Shaders/Isolines.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Isolines.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Isolines.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Isolines.tesc.spv", "tessellationEvaluation": "DepthPass_Isolines.tese.spv" } }, "triangles": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Triangles.tesc.spv", "tessellationEvaluation": "Shaders/Triangles.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Triangles.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Triangles.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Triangles.tesc.spv", "tessellationEvaluation": "DepthPass_Triangles.tese.spv" } }, "quads": { "base": { "vertex": "Shaders/PBR_Tess.vert.spv", "tessellationControl": "Shaders/Quads.tesc.spv", "tessellationEvaluation": "Shaders/Quads.tese.spv", "fragment": "Shaders/PBR_Tess.frag.spv" }, "shadow": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "Shaders/DepthPass_Quads.tesc.spv", "tessellationEvaluation": "Shaders/DepthPass_Quads.tese.spv" }, "depthPass": { "vertex": "Shaders/DepthPass_Tess.vert.spv", "tessellationControl": "DepthPass_Quads.tesc.spv", "tessellationEvaluation": "DepthPass_Quads.tese.spv" } } } } } A shader family file can indicate a root to inherit values from. The Blinn-Phong shader family pulls settings from the PBR file and just switches some of the fragment shader values.
      { "turboShaderFamily" : { "root": "PBR.json", "OPAQUE": { "default": { "base": { "fragment": "Shaders/Blinn-Phong.frag.spv" } }, "isolines": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } }, "triangles": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } }, "quads": { "base": { "fragment": "Shaders/Blinn-Phong_Tess.frag.spv" } } } } } If you want to implement a custom shader, this is more work because you have to define all your changes for each possible shader variation. But once that is done, you have a new shader that will work with all of these different settings, which in the end is easier. I considered making a more complex inheritance / cascading schema but I think eliminating ambiguity is the most important goal in this and that should override any concern about the verbosity of these files. After all, I only plan on providing a couple of these files and you aren't going to need any more unless you are doing a lot of custom shaders. And if you are, this is the best solution for you anyways.
      Consequently, the baseShader, depthShader, etc. values in the material file definition are going away. Leadwerks .mat files will always use the Blinn-Phong shader family, and there is no way to change this without creating a material file in the new JSON material format.
      The shader class is no longer derived from the Asset class because it doesn't correspond to a single file. Instead, it is just a dumb container. A ShaderModule class derived from the Asset class has been added, and this does correspond with a single .spv file. But you, the user, won't really need to deal with any of this.
      The result of this is that one material will work with tessellation enabled or disabled, quad, triangle, or line meshes, and animated meshes. I also added an optional parameter in the CreatePlane(), CreateBox(), and CreateQuadSphere() commands that will create these primitives out of quads instead of triangles. The main reason for supporting quad meshes is that the tessellation is cleaner when quads are used. (Note that Vulkan still displays quads in wireframe mode as if they are triangles. I think the renderer probably converts them to normal triangles after the tessellation stage.)


      I also was able to implement PN Quads, which is a quad version of the Bezier curve that PN Triangles add to tessellation.



      Basically all the complexity is being packed into the shader family file so that these decisions only have to be made once instead of thousands of times for each different material.
×
×
  • Create New...