Jump to content

US Army presents "Mast Bumping"

Flexman

1,406 views

I know it's a little late for Valentines Day. Excessive flapping, bumping and separation is discussed in this priceless US Army video from 1980. If only they had "RotorCam ™". The Apache has a fixed rotor, mast bumping isn't an issue but it's all part of helicopter theory.

 

 

 

I've been forced to continue hunting for other employment to deal with a mounting debt crisis. As a result work was put on hold the past two weeks (hence the lack of updates). I apologise for letting my post slide, the project really is taking a toll. I've been ordered to get back to Combat-Helo ASAP (taxes and all that business stuff needed to be done too), I'll be updating as well as I can. There's an engine update to finish rolling into the project (I started on that earlier in the week, this fixes a problem with terrain and I hope the EntityUserData and hierarchy problem).

 

A Twitter follower suggested I post some Gun Cam footage, I had a look at that and found vegetation range/LOD issues in the MTADS camera need dynamic adjusting (not sure what the most efficient method will be yet).

 

I'll just round this entry off by stating that raising funds in the UK for technical entertainment projects is very difficult if not near impossible. Bank staff/accountants take one look at video of Apache cockpits and give you funny looks like you're some kind of gun nut (that actually happened).

 

In the meantime, enjoy the technical detail of the above video.



5 Comments


Recommended Comments

very interesting flexman...

I was reminded of your blog post when I saw in the news today an example of ground resonance...

 

 

are you planning on incorporating destruction aspects of the helicopter into combat helo as well?

Share this comment


Link to comment

Not in this case Mac. There's enough going on in the flight-model. Mast separation and structural damage is difficult to achieve, indeed visual representation of damage modelling was quite difficult, we have some 4 stage GREAT textures showing progressive damage but decals are not viable for this. Helicopter mesh detail requires non-instanced meshes and I WISH that I had built the helicopter not as a complete vehicle but as an assembly of common parts that could be instanced however LOD issues would have caused problems with that. Especially as some parts need animation (skinning).

 

So that whole subject was a bag of worms that only with the recent Leadwerks 2.5 update would have been possible but too late to do anything about. So a feature best left for "the future".

 

The damaged skin textures (covered in small bullet holes and scratches) do need to be used somehow and I'm hoping I can add those in later with some shader to blend them onto the aircraft. It needs to be progressive, that is, the greater the damage, the more of the damage texture has to show.

 

Does that make any sense at all?

Share this comment


Link to comment
Guest Red Ocktober

Posted

In the UK crowdfunding is not legal. Use of such funding sources carries a risk of prosecution.

 

wow... that's a shame...

 

--Mike

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Josh in Josh's Dev Blog 2
      The Leadwerks 5 beta will soon be updated with particle emitters and an example particle system plugin. Previously, I showed some impressive results with physically interactive particles that collide with and exert forces on the environment. I decided to use the plugin system for controlling particle behavior, as this offers the best performance and can be run on the physics thread. 
      A particle system plugin uses some predefined structures and functions to modify the behavior of particles when they are emitted or as they are updated. This allows for unlimited features to be added to the particle system, because anything you want can be added with a plugin. A system for sending settings to the plugin will be implemented in the future so you can adjust the plugin settings and see the results. The default particle settings and features will probably stay pretty barebones and I will just use the plugin system to add any advanced functionality since it is so flexible.
      void EmitParticle(ParticleModifier* mod, ParticleSystem* particlesystem, Particle* particle) { if (mod->emissionshape == EMISSION_SHAPE_BOX) { particle->position[0] = Random(-mod->area[0], mod->area[0]); particle->position[1] = Random(-mod->area[1], mod->area[1]); particle->position[2] = Random(-mod->area[2], mod->area[2]); } else if (mod->emissionshape == EMISSION_SHAPE_CYLINDER) { particle->position[0] = Random(-mod->area[0], mod->area[0]); particle->position[1] = Random(-mod->area[1], mod->area[1]); particle->position[2] = Random(-mod->area[2], mod->area[2]); auto l = sqrt(particle->position[0] * particle->position[0] + particle->position[1] * particle->position[1] + particle->position[2] * particle->position[2]); if (l > 0.0f) { particle->position[0] /= l; particle->position[1] /= l; particle->position[2] /= l; } } particle->position[0] += particlesystem->matrix[12]; particle->position[1] += particlesystem->matrix[13]; particle->position[2] += particlesystem->matrix[14]; } There are three other new Lua examples included. Coroutines.lua shows how a sequence of actions can be added to an entity before the game starts, and the actions will be executed in order:
      --Create model local model = CreateBox(world) --Add some behaviors to be executed in order model:AddCoroutine(MoveToPoint, Vec3(3,0,0), 2) model:AddCoroutine(MoveToPoint, Vec3(-3,0,0), 2) model:AddCoroutine(MoveToPoint, Vec3(0,0,0), 2) --Main loop while window:Closed() == false do world:Update() world:Render(framebuffer) end This is great for setting up cut scenes or other sequences of events.
      An example showing how to enable tessellation is also included. Tessellation is now a per-camera setting.
      camera:SetTessellation(10) The number you input is the size in pixels of the tessellated primitives. Use zero to disable tessellation. Tessellation is disabled by default on all cameras.
      Finally, an example showing how to use a texture loader plugin is included. All you have to do is load the plugin and after that textures can be loaded in VTF format:
      local vtfloader = LoadPlugin("Plugins/VTF.dll") local tex = LoadTexture("Materials/wall01.vtf")  
    • By Josh in Josh's Dev Blog 4
      I made some changes to the design of the particle system. I am less concerned with the exact behavior of particles as they move around and move interested right now in building a system with good performance and deep physics interactions. Although I want particle behavior to be customizable, I don't think scripts are the right tool for the job. C++ plugins are better suited for this for two reasons.
      C++ is much faster, and particles are a system that will make heavy use of that. Lua scripts can't be run on separate threads. In Leadwerks Engine 4 we have basic particle collisions, but I wanted something more interactive in the new system. I move the particle update code into the physics thread. I implemented collision as well as the ability for particles to exert forces on other objects. Here's what happens when some slow-moving smoke particles interact with a scene: The lower platform rotates freely while the upper platform is motorized.
      When the particle velocity is increase they start to behave like a stream of water:
      Best of all, the speed is surprisingly fast. 4000 particles with collision update in just 2 milliseconds. The code scales well across cores so if you have a lot of CPU cores simulations with 100,000 particles are possible.
      Right now particles are processed in the physics thread, and get sent to the rendering thread for display, but right now the main thread actually never sees the individual particles.
      This is fast enough I think particles will default to full physics. Instead of just being a dumb visual effect we are going to have fully interactive fluids and gases. Flamethrowers can fill a room with fire and it will creep around corners to fill a space.
    • By Josh in Josh's Dev Blog 7
      For finer control over what 2D elements appear on what camera, I have implemented a system of "Sprite Layers". Here's how it works:
      A sprite layer is created in a world. Sprites are created in a layer. Layers are attached to a camera (in the same world). The reason the sprite layer is linked to the world is because the render tweening operates on a per-world basis, and it works with the sprite system just like the entity system. In fact, the rendering thread uses the same RenderNode class for both.
      I have basic GUI functionality working now. A GUI can be created directly on a window and use the OS drawing commands, or it can be created on a sprite layer and rendered with 3D graphics. The first method is how I plan to make the new editor user interface, while the second is quite flexible. The most common usage will be to create a sprite layer, attach it to the main camera, and add a GUI to appear in-game. However, you can just as easily attach a sprite layer to a camera that has a texture render target, and make the GUI appear in-game on a panel in 3D. Because of these different usages, you must manually insert events like mouse movements into the GUI in order for it to process them:
      while true do local event = GetEvent() if event.id == EVENT_NONE then break end if event.id == EVENT_MOUSE_DOWN or event.id == EVENT_MOUSE_MOVE or event.id == EVENT_MOUSE_UP or event.id == EVENT_KEY_DOWN or event.id == EVENT_KEY_UP then gui:ProcessEvent(event) end end You could also input your own events from the mouse position to create interactive surfaces, like in games like DOOM and Soma. Or you can render the GUI to a texture and interact with it by feeding in input from VR controllers.

      Because the new 2D drawing system uses persistent objects instead of drawing commands the code to display elements has changed quite a lot. Here is my current button script. I implemented a system of abstract GUI "rectangles" the script can create and modify. If the GUI is attached to a sprite layer these get translated into sprites, and if it is attached directly to a window they get translated into system drawing commands. Note that the AddTextRect doesn't even allow you to access the widget text directly because the widget text is stored in a wstring, which supports Unicode characters but is not supported by Lua.
      --Default values widget.pushed=false widget.hovered=false widget.textindent=4 widget.checkboxsize=14 widget.checkboxindent=5 widget.radius=3 widget.textcolor = Vec4(1,1,1,1) widget.bordercolor = Vec4(0,0,0,0) widget.hoverbordercolor = Vec4(51/255,151/255,1) widget.backgroundcolor = Vec4(0.2,0.2,0.2,1) function widget:MouseEnter(x,y) self.hovered = true self:Redraw() end function widget:MouseLeave(x,y) self.hovered = false self:Redraw() end function widget:MouseDown(button,x,y) if button == MOUSE_LEFT then self.pushed=true self:Redraw() end end function widget:MouseUp(button,x,y) if button == MOUSE_LEFT then self.pushed = false if self.hovered then EmitEvent(EVENT_WIDGET_ACTION,self) end self:Redraw() end end function widget:OK() EmitEvent(EVENT_WIDGET_ACTION,self) end function widget:KeyDown(keycode) if keycode == KEY_ENTER then EmitEvent(EVENT_WIDGET_ACTION,self) self:Redraw() end end function widget:Start() --Background self:AddRect(self.position, self.size, self.backgroundcolor, false, self.radius) --Border if self.hovered == true then self:AddRect(self.position, self.size, self.hoverbordercolor, true, self.radius) else self:AddRect(self.position, self.size, self.bordercolor, true, self.radius) end --Text if self.pushed == true then self:AddTextRect(self.position + iVec2(1,1), self.size, self.textcolor, TEXT_CENTER + TEXT_MIDDLE) else self:AddTextRect(self.position, self.size, self.textcolor, TEXT_CENTER + TEXT_MIDDLE) end end function widget:Draw() --Update position and size self.primitives[1].position = self.position self.primitives[1].size = self.size self.primitives[2].position = self.position self.primitives[2].size = self.size self.primitives[3].size = self.size --Update the border color based on the current hover state if self.hovered == true then self.primitives[2].color = self.hoverbordercolor else self.primitives[2].color = self.bordercolor end --Offset the text when button is pressed if self.pushed == true then self.primitives[3].position = self.position + iVec2(1,1) else self.primitives[3].position = self.position end end This is arguably harder to use than the Leadwerks 4 system, but it gives you advanced capabilities and better performance that the previous design did not allow.
×
×
  • Create New...