Jump to content

Stretch goals revealed for Leadwerks for Linux Kickstarter campaign

Josh

1,660 views

I'm pleased to announce the full stretch goals for the Leadwerks for Linux Kickstarter campaign:

 

$26,000 - Android + Ouya for All: We will provide all backers who pledged $100 or more with Android support. We’ll also add support for OUYA, the Android-based open game console. This will let you build games for Android and OUYA, without ever leaving the Linux operating system.

 

$30,000 - Blender integration: We want to integrate Leadwerks with the free 3D modeling package Blender. We’ll start with a Blender exporter that saves a model and all materials ready-to-use in Leadwerks, and look for other Blender features we can put to work in our engine.

 

$35,000 - 64-bit Builds: We’ll provide 64-bit builds of the Leadwerks engine library, along with the 32-bit library. (We decided to provide this for Linux by default. The stretch goal is for 64-bit builds on Windows and Mac.)

 

$45,000 - Visual GUI Editor: We want to build a fully integrated GUI editor right into Leadwerks. This will let you create game menus with buttons, sliders, switches, and more, in a fully skinnable GUI system. GUI elements will even integrate with our flowgraph system, so you can visually attach GUI elements to scripted events and C++ callbacks.

 

$55,000 - Oculus Rift + Omni in Linux: We want to integrate the great virtual reality headset Oculus Rift with Leadwerks, all running natively in Linux. We’ll even include support for the Omni VR treadmill, so Linux developers can create the full VR experience.

 

$85,000 - Broaden Your World: We’ll implement full 64-bit floating point math and streaming terrain data to create worlds beyond the limits of 32-bit floating point precision. Want to create detailed worlds ten times bigger than Crysis maps? We can make it happen.

 

$150,000 - Choose Two Flavors of Linux: Variety is the spice of life, and Linux is baked with plenty of it! We’ll work with the top two distros backers choose to provide full Leadwerks integration and ongoing support for two years.

 

$200,000 - Plugin-Free 3D Web Games: We’ll work with asm.js to compile Leadwerks in web-ready format so you can distribute 3D web games for supported browsers, with no proprietary plugins required.



3 Comments


Recommended Comments

$35,000 - 64-bit Builds: We’ll provide 64-bit builds of the Leadwerks engine library, along with the 32-bit library. (We decided to provide this for Linux by default. The stretch goal is for 64-bit builds on Windows and Mac.)

 

I hope this will also come with an (paid) update (3.2 or so), otherwise it would start to go ridiculous. (Windows/Mac HAVE TO bake for 64 Bit Support)

Share this comment


Link to comment

It was originally going to be a stretch goal for Linux, but on Linux it can be difficult to run 32-bit libraries on a 64-bit OS.

Share this comment


Link to comment

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Blog Entries

    • By Haydenmango in Snowboarding Development Blog 6
      So I've been researching snowboarding lately to get an idea of what animations and mechanics I need to create for my game.  I have learned lots of interesting things since I've only seen snow once or twice in my entire life and have never even tried snowboarding or any other board sports (skateboarding, surfing, etc.) for that matter.
       
      Snowboarding tricks are quite interesting as they are mostly derived from skateboarding.  Snowboarding tricks pay homage to their equivalent skating tricks by sharing many concepts and names.  For example basic grabs in snowboarding share the same concepts and names as skateboarding: indy, mute, method, stalefish, nosegrab, and tailgrab.  Something interesting to note is in snowboarding you can grab Tindy or Tailfish but this is considered poor form since these grabs can't be done on a skateboard (due to the board not being attached to the skaters feet) and grabbing these areas is generally something a novice snowboarder does when failing or "half-assing" a normal grab.  Check out this diagram to see how grabs work -
       
       
      So, after reading lots of text descriptions for tricks I was still confused by what all these terms meant and how they were actually applied.  So my next step was to look up these tricks actually being done and I found some really cool videos showing off how to do various tricks.  This video in particular is the best reference material I've found as it contains nearly every trick back to back with labeled names and some tweaks -
       
      Sadly my rigged model doesn't handle leg animations with the snowboard that well so I can't animate as many tricks as I want to.  Regardless there will still be around 15 total grab/air tricks in the game.  Now it's time for me to stop procrastinating and start animating!  
    • By jen in jen's Blog 3
      I thought I would share my experience on this; if you're working on Multiplayer, you will need to protect your packets. The solution is simple, let's go through how we can achieve this by implementing what Valve calls "challenge codes". (Some reading on the topic from Valve here: https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol#Challenge_response).
      Disclaimer: this doesn't cover other security techniques like authoritative server or encryption.
      So, I've worked on Border Recon last year (I think) and I needed a way to protect my server/client packets. There was no need for me to re-invent the wheel, I just had to copy what Valve has had for a  long time - challenge  codes.
      The idea behind challenge codes is similar to Captcha, but not exactly. Think of it like this: for every packet submitted to the server, it must be verified - how? By requiring the client to solve challenges our server provides.
      To implement this we need to have the following:
      A randomised formula in the server i.e.: a = b * c / d + e or a = b / c + d - e, be creative - it can be any combination of basic arithmetic or some fancy logic you like and can be however long as you want - do consider that the longer the formula, the more work your server has to do to make the computation.  Copy the same formula to the client. A random number generator.  So the idea here is:
      (Server) Generate a random number (see 3 above) of which the result would become the challenge code, (Server) run it through our formula and record the result. (Client) And then, we hand over the challenge code to the client to solve (an authentic client would have the same formula implemented in its program as we have on the server). For every packet received from the player, a new challenge code is created (and the player is notified of this change by the server in response). For every other packet, a new challenge code is created. (Client) Every packet sent to the server by the client must have a challenge code and its answer embedded.  (Server receives the packet) Run the challenge code again to our formula and compare the result to the answer embedded on the client's packet. (Server) If the answers are different, reject the packet, no changes to the player's state. The advantage(s) of this strategy in terms of achieving the protection we need to secure our server:
      - For every packet sent, new challenge code is created. Typically, game clients (especially FPS) will update its state in a matter of ms so even if a cheater is successful at sniffing the answer to a challenge code it would be invalidated almost instantaneously. 
      - Lightweight solution. No encryption needed. 
      Disadvantage(s):
      - The formula to answering the challenge code is embedded to the client, a cheater can de-compile the client and uncover the formula. Luckily, we have other anti-cheat solutions for that; you can implement another anti-cheat solution i.e. checking file checksums to verify the integrity of your game files and more (there are third-party anti cheat solutions out there that you can use to protect your game files).
       
       
       
    • By Josh in Josh's Dev Blog 4
      New commands in Turbo Engine will add better support for multiple monitors. The new Display class lets you iterate through all your monitors:
      for (int n = 0; n < CountDisplays(); ++n) { auto display = GetDisplay(n); Print(display->GetPosition()); //monitor XY coordinates Print(display->GetSize()); //monitor size Print(display->GetScale()); //DPI scaling } The CreateWindow() function now takes a parameter for the monitor to create the window on / relative to.
      auto display = GetDisplay(0); Vec2 scale = display->GetScale(); auto window = CreateWindow(display, "My Game", 0, 0, 1280.0 * scale.x, 720.0 * scale.y, WINDOW_TITLEBAR | WINDOW_RESIZABLE); The WINDOW_CENTER style can be used to center the window on one display.
      You can use GetDisplay(DISPLAY_PRIMARY) to retrieve the main display. This will be the same as GetDisplay(0) on systems with only one monitor.
×
×
  • Create New...